Observing IGR J16318–4848 with *Suzaku*: Probing Compton-thick Absorption

Katja Pottschmidt
CRESST-UMBC & NASA-GSFC, USA

Laura Barragan, Jörn Wilms
Remeis-Sternwarte Bamberg, FAU, Germany

Stefanie Roth (FAU), Sonja Fritz (IAAT, Univ. Tübingen), Michael A. Nowak (MIT), Julia C. Lee (Harvard College Observatory), John A. Tomsick (SSL, UC Berkeley), Roland Walter (ISDC), Ingo Kreykenbohm (IAAT/ISDC), Peter Kretschmar (ESAC), Markus Kuster (Univ. Darmstadt)

The *Suzaku* X-ray Universe, 2007 December 12
Sources discovered by *INTEGRAL*

Bodaghee et al., 2007, A&A, 467, 585

- ~200 new @ 20–100 keV
- 50% classified
- mainly HMXBs

new classes:
1. supergiant FXT
2. Norma region: highly absorbed
Sources discovered by *INTEGRAL*

Bodaghee et al., 2007, A&A, 467, 585

- ~200 new @ 20–100 keV
- 50% classified
- mainly HMXBs

new classes:
1. supergiant FXT
2. Norma region: highly absorbed
IGR J16318−4848

Courvoisier et al., 2003, IAUC 8063

- first new transient with IBIS/ISGRI
- 2003–01–29 during Galactic Plane Scan

one of the most highly absorbed sources:
$N_H \sim 2 \times 10^{24} \text{ cm}^{-2}$

- $\text{sgB[e]} \Rightarrow \text{HMXB}$
- NS or BH?
after Ibarra et al., 2007, A&A 465, 501

- $N_H = 1.82^{+0.05}_{-0.03} \times 10^{24} \text{ cm}^2$
- $\Gamma = 1.46 \pm 0.03$
- $E_{\text{Fold}} < 16 \text{ keV}$
- $E_{\text{Fe K}\alpha} = 6.43 \text{ keV}$
- $E_{\text{Fe K}\beta} = 7.10 \text{ keV}$
- $E_{\text{Ni K}\alpha} = 7.45 \text{ keV}$
- Compton shoulder?

- 3 × XMM-EPIC and INTEGRAL-ISGRI
- average flux varies by factor 3
average flux in 0.2–80 keV

4.2 \text{(Suzaku)}
8.7 \text{(high XMM/INT)}
\left[10^{10} \text{ ergs cm}^{-2} \text{ s}^{-1}\right]

⇒
\text{Suzaku} \sim \text{weak XMM}

- 70 ks exposure
- 2006–08–14 (data in spring 2007)
\(\chi^2_{\text{red}} = 1.1 \)

- \(N_H = 1.92 \pm 0.03 \times 10^{24} \text{ cm}^2 \)
 \text{TBabs (Wilms et al. 2000)}

- \(A_{\text{Fe}} = 1.05^{+0.04}_{-0.03} \text{ wrt ISM}, \text{ explains previous under-abundance wrt solar} \)
\[\chi_{\text{red}}^2 = 1.1 \]

- \(\Gamma = 0.68 \pm 0.04 \)
- as well constrained as with XMM+INTEGRAL, considerably harder
\(\chi_{\text{red}}^2 = 1.1 \)

- \(E_{\text{Fold}} = 21.5 \pm 1.1 \text{ keV} \)
- could not be constrained before, Compton hump?, no “reflection”
$\chi^2_{\text{red}} = 1.1$

- **Soft Excess**, shape not constrained (here: power-law)
- probably partly due to **nearby source** (30″, Ibarra et al., 2007)
$E_{\text{Fe K}\alpha} = 6.405(3) \text{ keV}$
$E_{\text{Fe K}\beta} = 7.06(1) \text{ keV}$
$E_{\text{Ni K}\alpha} = 7.50(7) \text{ keV}$

EW=892 eV
EW=112 eV
EW=37 eV

Residuals ⇔ Compton shoulder?
Norma Arm & IGR Sources

Previous Observations

Suzaku Observation

Broad Band Spectrum

Lines

Light curves

Summary & Outlook

2006 August

![Graph showing light curve data with JD−2400000 on the x-axis and counts/s on the y-axis. The graph includes data for XIS-PIN and XIS+PIN, with some variable data points.](image)

- Satellite orbit averaged
- Variable by a factor of a few
- Hardness vs time
- ⇒ hard dips, absorption

Katja Pottschmidt

IGR J16318—4848
Satellite orbit averaged

Variable by a factor of a few

Hardness vs intensity

⇒ Hard dips, absorption

Katja Pottschmidt

IGR J16318—4848
Norma Arm & IGR Sources
Previous Observations
Suzaku Observation
Broad Band Spectrum
Lines
Light curves
Summary & Outlook

- Satellite orbit averaged
- Variable by a factor of a few
- Hardness vs intensity
- ⇒ hard dips, absorption

Katja Pottschmidt
IGR J16318—4848
Summary

- \(N_H\), line parameters \((E, EW)\) consistent with \textit{XMM/INTEGRAL}\n- \(\Gamma\) considerably harder
- \(E_{\text{Fold}}\) can be constrained
- variability to first order due to absorption

\textit{Suzaku} is uniquely suited to study Compton-thick absorption: lines & curvature

Outlook

- time-resolved spectroscopy
- expand \texttt{TBabs} to full transmission model
 \(\Rightarrow\) consistent with Compton hump?
 \(\Rightarrow\) consistent with Compton shoulder?